1	(a	it is an alkane or hydrocarbon it is saturated or only C—C single bonds accept: no double bonds	[1] [1]
	(b)	molecular formula C_6H_{12} empirical formula CH_2	[1] [1]
	(c)	correct structural formula of cyclobutane	[1]
	(d)	C ₆ H ₁₂ accept : a correct structural formula	[1]
		(ii) same molecular formula not : chemical formula different structural formulae / structures	[1] [1]
	(e)	add bromine (water) or (I)	[1]
		cond: (remains) brown or orange or red or yellow	[1]
		cond : changes from brown, etc. to colourless or decolourises not : clear	[1]
		OR potassium manganate(VII) note: oxidation state not essential but if given must be correct or [0] accept: potassium permanganate	[1
		cond: remains pink / purple	[1]
		cond : changes from pink to colourless (acidic) not : clear	[1]
		cond: change from pink to green / brown (alkaline)	
		[Total	: 11]
2	(a	(i) cars, ships, bridges, construction, white goods, screws, nails, roofing, fencing, etc.	[1]
		 (ii) e.g. stainless steel cooking utensils, surgical equipment, sinks or main use 	[1] [1]
	(b)	blow in oxygen NOT air carbon dioxide and sulfur dioxide (escape as gases)	[1] [1]
		COND on reaction with air / oxygen	[4]
		ALLOW calcium carbonate, limestone phosphorus oxide or silicon oxide (are acidic) reacts (with calcium oxide / CaCO ₃)	[1]
		to form slag / calcium silicate	[1]

3	(a	(i)	roast or heat or burn in air / roast or heat or burn in oxygen need both of the above	[1]
		(ii)	ZnO + C → Zn + CO / 2ZnO + C → 2Zn + CO2 / ZnO + CO → Zn + CO ₂	[1]
	(b)		$ZnO + H_2SO_4 \rightarrow ZnSO_4 + H_2O$	[1
		(ii)	zinc reduces / gives electrons / displaces (copper / cobalt / nickel ions)	[1]
			forming copper / cobalt / nickel (metal which is precipitated)	[1]
	(c)		$Zn^{2+} + 2e \rightarrow Zn$	[1]
		(ii)	OH → $2H_2O + O_2 + \dots = (1)$ only 4OH → $2H_2O + O_2 + 4e$	[2]
		(iii)	sulfuric acid / hydrogen sulfate ACCEPT: sulfuric acid	[1]
	(d))	Any two of: appearance more resistant to corrosion harder (accept stronger) easier to cast	[2]
		(ii)	zinc more reactive (than iron or steel) zinc loses electrons electrons move (from zinc) to iron zinc reacts (with air and water) / zinc corrodes / is oxidised / forms positive ions / anodic or iron and steel don't react (with air and water) / not oxidised / do not form ions /	[1] [1] [1]
			do not lose electrons	[1]
			[Total	: 15]

4	(a	calcium carbonate \rightarrow calcium oxide + carbon dioxide accept: correct symbol equation	
		$Ca(OH)_2 \rightarrow CaO + H_2O$	[1
	(b)	 (i) CuO and NO₂ and O₂; accept: names or correct formulae 	[1]
	((ii) $2NaNO_3 \rightarrow 2NaNO_2 + O_2$ accept: $NaNO_3 \rightarrow NaNO_2 + 1/2 O_2$ not balanced = [1]	[2]
	(c)	Na / Ca;	[1]
	(d)	Cu; Ag; accept: <i>ions</i> Cu ²⁺ <i>and</i> Ag ⁺	[2]
			[Total: 8]

5	(a) (device which changes chemical energy; into electrical energy; 	[1] [1]
		produces a voltage / potential difference / electricity; due to difference in reactivity of two metals;	[1] [1]
		produces a voltage / potential difference / electricity; by redox reactions;	[1] [1]
	(i	 i) negative / electrode B / right electrode; accept: anode because it is the electrode which supplies electrons to external circuit 	[1]
		loses ions / iron ions / Fe ²⁺ or Fe ³⁺ ; electrons move from this electrode;	[1] [1]
	(ii	 change of <u>mass</u> of electrode / <u>mass</u> of rust formed; time / mention of stop watch / regular intervals; 	[1] [1]
	(iv	 to make it a better conductor; 	[1]
	(b) r r r	noles of Fe = $51.85/56 = 0.926 (0.93)$; noles of O = $22.22/16 = 1.389 (1.39)$; noles of H ₂ O = $16.67/18 = 0.926 (0.93)$;	[1] [1] [1]
	i t t	f given as 0.9 1.4 0.9 hree of the above correct = [2] wo of the above correct = [1]	
	5	simplest whole number mole ratio Fe : O : H ₂ O is 2: 3: 2 / Fe ₂ O ₃ .2H ₂ O; Illow: ecf for a formula based on an incorrect whole number ratio	[1]

- 6 (a) flexible / easily form different shapes / easily moulded / bends (without cracking); [1] non-biodegradable / unreactive / don't corrode / prevent corrosion / prevent oxidation (of the conducting metal) / water resistant / waterproof; [1]
 - (b) improve appearance / decorative / makes appearance shiny; [1] prevent corrosion / rusting / protect steel / chromium will not corrode / chromium is not oxidised / chromium protected by an oxide layer; [1]
 - (c) low density / light / protected by oxide layer / no need to paint / resists corrosion / (high) strength / strong;; any two
 [2]
 note: high strength to weight ratio = 2
 - (d) high mpt / withstands high temperature / good conductor (of heat) / heats up quickly / malleable / ductile / resists corrosion / good appearance / unreactive (or example of lack of reactivity e.g. does not react with food or water or acid or air);; any two [1]
 - (e) (lattice) positive ions / cations / metal ions and sea of electrons / delocalised or free or mobile or moving electrons;
 <u>attraction</u> between positive ions and electrons;